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Abstract 

Background:  Partial amphiploids created by crossing octoploid tritelytrigia(2n = 8× = 56, AABBDDEE) and Thino-
pyrum intermedium (2n = 6× = 42, StStJJJSJS) are important intermediates in wheat breeding because of their resist-
ance to major wheat diseases. We examined the chromosome compositions of five wheat-Th. intermedium partial 
amphiploids using GISH and multicolor-FISH.

Results:  The result revealed that five lines had 10-14 J-genome chromosomes from Th. intermedium and 42 com-
mon wheat chromosomes, using the J-genomic DNA from Th. bessarabicum as GISH probe and the oligo probes 
pAs1-1, pAs1-3, AFA-4, (GAA​) 10, and pSc119.2-1 as FISH probe. Five lines resembled their parent octoploid tritelytrigia 
(2n = 8× = 56, AABBDDEE) but had higher protein contents. Protein contents of two lines HS2-2 and HS2-5 were up 
to more than 20%. Evaluation of Fusarium head blight (FHB) resistance revealed that the percent of symptomatic 
spikelets (PSS) of these lines were below 30%. Lines HS2-2, HS2-4, HS2-5, and HS2-16 were less than 20% of PPS. Line 
HS2-5 with 14 J-genome chromosomes from Th. intermedium showed the best disease resistance, with PSS values of 
10.8% and 16.6% in 2016 and 2017, respectively.

Conclusions:  New wheat-Th. intermedium amphiploids with the J-genome chromosomes were identified and can 
be considered as a valuable source of FHB resistance in wheat breeding.
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Background
Common wheat (Triticum aestivum L, 2n = 6× = 42, 
AABBDD) is represented by a narrow germplasm base, 
which causes vulnerability to biotic and abiotic stresses 
[23, 35, 50, 55]. This narrow gene pool minimizes oppor-
tunities for developing genetic resistance to diseases. 

However, wild relatives of wheat provide a valuable reser-
voir of genes for cultivar improvement via wide hybridi-
zation [59, 69]. The wheatgrass, Th. intermedium (Host) 
Barkworth and D. R. Dewey (2n = 6× = 42) [syn. Agropy-
ron intermedium (Host) Beauvoir, or Elytrigia interme-
dia (Host) Nevski, 2n = 6× = 42 StStJJJsJs], is a perennial 
autoallo-hexaploid species that is an important source of 
genetic variability for improving cultivated wheat. It has 
been used extensively for hybridization with bread wheat 
and durum wheat, and numerous useful genes have been 
transferred to wheat [27, 51, 65]. Many derivatives have 
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been produced from wheat-Th. intermedium hybrids, 
such as octoploid and hexaploid partial amphiploids 
and chromosome addition, substitution and transloca-
tion lines [10, 60]. Th. intermedium provides resistance 
against a wide spectrum of fungal pathogens (wheat leaf 
rust, stripe rust, stem rust, powdery mildew and eyespot; 
immunity to smut, leaf blight, root rot) and barley yel-
low dwarf virus and stripe mosaic viruses [13, 17, 23, 40, 
41, 67]. Additionally, Th. intermedium is one of the most 
advanced examples of a recently domesticated peren-
nial grain crop [18]. At present, numerous intergeneric 
hybrids and cytogenetic stocks have been developed 
from wheat-Th. intermidium crosses, including partial 
amphiploids [4, 22, 56], chromosome addition lines [29, 
44], substitution lines [31, 38, 45], and translocation lines 
[30, 46].

Fusarium head blight (FHB), caused mainly by the fun-
gus Fusarium graminearum Schwabe, is a destructive 
disease of wheat and poses a serious threat to the health 
of consumers of wheat products [2, 49]. Genetic studies 
in wheat have identified more than 200 useful loci for 
improvement of complex traits, such as FHB. Unfortu-
nately, many of them remain unused or under-utilized 
in plant breeding programs mainly because of the com-
plex nature of resistance [6, 7]. Extensive efforts have 
been made to utilize host resistance for managing this 
disease. At present, the most effective and widely used 
QTL for FHB resistance is located on chromosome 3BS 
of the Chinese wheat varieties Sumai 3 and Wangshu-
ibai [1, 34, 70], which have been further investigated and 
several additional QTL enhancing the resistance were 
mapped [43]. Among the QTL identified for resistance 
to FHB, only seven have been formally designated, i.e., 
Fhb1 derived from Sumai 3 [15], Fhb2 from Sumai 3 [14], 
Fhb3 from Leymus racemosus [51], Fhb4 from Wang-
shuibai [64], Fhb5 from Wangshuibai and Sumai 3 [65], 
Fhb6 from Elymus tsukushiensis [8], and Fhb7 from Thi-
nopyrum ponticum [27]. Recent investigations of several 
other wild relatives of wheat, such as diploid wheatgrass 

Leymus racemosus, Th. intermedium, and tetraploid 
wheatgrass Th. junceiforme, have been shown to be highly 
resistant to FHB [5, 11, 16, 37]. Additionally, some wheat-
wild species, including accessions of the St genome of Th. 
intermedium and the E genome of Th. elongatum, have 
been shown highly resistant to FHB, making these spe-
cies the most successful examples for introgression of 
elite genes from wild relatives for wheat improvement 
[32, 54, 67]. Using sequence information obtained from 
the cloned gene, Rawat et  al. [52] studied the origin of 
Fhb1 in wheat and related species, and sequenced Fhb1 
gene from a large set of diploid A- genome, S- genome 
and D- genome accessions. Using sequence data from Th. 
elongatum, Wang et al. [62] mapped Fhb7 and located it 
to a 245-kb genomic region. Thus, Fhb7 resistance differs 
from Fhb1 resistance, which depends on a reduction of 
pathogen growth in spikes, although both confer durable 
resistance.

Wheat-Thinopyrum partial amphiploids play an impor-
tant role in the transfer of disease-resistant genes from 
wheatgrass species into common wheat [39, 41]. To date, 
a number of wheat-Th. intermedium partial amphiploids 
have been developed, such as Zhong 1 to Zhong 5 [56], 
Otrastsyuskaya (OT), TE-3, TAI8335 [21, 28, 66], TE253 
and TE257 [4]. The present study focused on the devel-
opment of five wheat-Th. intermedium partial amphip-
loids by crossing octoploid tritelytrigia (2n = 8× = 56, 
AABBDDEE) with Th. intermedium and characterized 
their FHB resistance and genomic constitutions by means 
of genomic in  situ hybridization (GISH) and multicolor 
fluorescence in situ hybridization (mcFISH).

Results
GISH and mcFISH analysis
Chromosome counts indicated that lines HS2-2, HS2-4, 
and HS2-5 had 56 chromosomes, and lines HS2-14 and 
HS2-16 had 54 chromosomes (Table  1). GISH analysis 
using Th. intermedium genomic DNA as a probe and 
common wheat genomic DNA as a blocker revealed that 

Table 1  Chromosome compositions of the wheat-Th. intermedium lines

Line Pedigree 2n =  No. of wheat 
chromosomes

No. of Th. intermedium 
chromosomes

J genome St or Js 
genome

HS2-2 Ganmai8/Th. intermedium 56 42 10 4

HS2-4 Ganmai8/Th. intermedium 56 42 10 4

HS2-5 Ganmai8/Th. intermedium 56 42 14 0

HS2-14 Ganmai8/Th. intermedium 54 42 12 0

HS2-16 Ganmai8/Th. intermedium 54 42 12 0
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lines HS2-2, HS2-4, and HS2-5 had 14 Th. intermedium 
chromosomes and 42 wheat chromosomes. Lines HS2-14 
and HS2-16 had 12 Th. intermedium chromosomes and 
42 wheat chromosomes. In order to further distinguish 
the composition of them, both J-genomic DNA from Th. 
bessarabicum and multiplex oligo probes were used with 
common wheat Chinese Spring as a blocker in the in situ 
hybridization analysis. Based on the signal patterns and 
signal density produced by each oligo, A and D genome 
signals are red or green dot at the arm and terminal of 
chromosome, B genome centromere usually appears a lot 
of green dot, so we can distinguish wheat genomes [20, 
61].

GISH analysis of line HS2-2 revealed that 10 chro-
mosomes from Th. intermedium displayed a light-green 
fluorescence signals over most of their lengths except for 
the terminal and centromeric regions with the J-genome 
signals (Fig. 1a), and four chromosomes with no signals 
of J-genome and oligo-probes were St- or JS-genome 
chromosomes from Th. intermedium (Fig.  1b). Line 
HS2-4 with the similar probe pattern of HS2-2 also had 
10 chromosomes from Th. intermedium with light-green 
fluorescence signals as the J-genome (Fig.  1c), and four 
chromosomes with no signals of J-genome and oligo-
probes were St- or JS-genome chromosomes from Th. 
intermedium (Fig. 1d). Line HS2-5 had 14 J chromosomes 
from Th. intermedium with the light-green J-genome sig-
nals (Fig. 1e). Line HS2-14 and HS2-16 had 12 chromo-
somes from Th. intermedium and some chromosomes 
with the whole light-green J-genome signals (Fig. 2a, c). 
Analysis of mcFISH with the oligo-probes demonstrated 
that all the lines maintained the complete set of wheat 
chromosomes from the A, B, and D genomes (Figs. 1b, d, 
f, 2b, d).

The above results revealed that line HS2-2 and 
HS2-4 with 2n = 8× = 56 had 4 chromosomes of St- or 
JS-genome chromosomes and 10 J-genome chromosomes 
from Th. intermedium and 42 wheat chromosomes. The 
genome composition of line HS2-5 was 42 wheat chro-
mosomes plus 14 J-genome chromosomes from Th. inter-
medium. Lines HS2-14 and HS2-16 had 12  J-genome 
chromosomes from Th. intermedium and 42 wheat chro-
mosomes. Therefore, these lines are identified as the 
wheat-Th. intermedium partial amphiploids.
Morphological characteristics and seed protein contents
In 2016 and 2017, results of morphological characteris-
tics in the field are shown in Table 2. The average plant 
heights of lines HS2-2, HS2-4, and HS2-5 were lower 
than both parents, Ganmai 8 and Th. intermedium, but 
those of lines HS2-14 and HS2-16 were similar to their 
parents. Spike lengths of five lines were similar to the par-
ent Ganmai 8. The number of tillers of the five lines was 
significantly less than that of the parent Th. intermedium, 

but similar to Ganmai 8 except for line HS2-14. Spikelet 
numbers per spike of the five lines were similar to the 
parent of Ganmai 8. Seeds of the main spikes from lines 
HS2-2 and HS2-4 were not significantly different from 
Ganmai 8, but higher than Th. intermedium. All lines 
had lower 1,000-kernal weight than Ganmai 8, but higher 
than Th. intermedium. Seed color of the five lines was red 
(Fig. 3). All the lines were resistant to lodging. Maturity 
of line HS2-14 and HS2-16 was similar to the local spring 
wheat cultivar Longmai 33. However, maturity of lines 
HS2-2, HS2-4, and HS2-5 was later than that of Longmai 
33. Seed protein content of the five lines (18.3%-22.5%) 
was higher than that of the parent Ganmai 8 (18.1%), but 
lower than Th. intermedium (26.0%). Lines HS2-2, HS2-4, 
HS2-5, and HS2-14 had more than 19% protein content 
and lines HS2-2 and HS2-5 had the highest values of up 
to 22.5% and 20.7%, respectively (Table 2).

FHB resistance evaluation
In 2016 and 2017, the five partial amphiploids were tested 
for their FHB resistance in the field. In resistant plants, 
the fungal infection was restricted to the central inocu-
lated spikelets and did not spread up or down across the 
spikes (Fig.  3). The field evaluation performed in both 
2016 and 2017 showed that all the five lines exhibited 
better resistance to FHB than the susceptible control 
Longmai 33 and the resistant control Sumai 3. Values of 
PSS for lines HS 2-2, HS2-4, HS2-5, and HS2-16 were less 
than 20% (Table  3). Line HS2-5 showed the best resist-
ance, with the PSS values of 11% and 17% in both 2016 
and 2017. Line HS2-2 had a better FHB resistance with 
the PSS values of 15% and 18% during 2016 and 2017. 
The values of PSS for lines 2-4 and HS2-16 were 18% 
and 20%, 16% and 19% in the two years, respectively. In 
contrast, line HS2-14 had the PSS values of 30% and 28% 
during 2016 and 2017 (Table 3).

Discussion
The production of partial amphiploids is a crucial inter-
mediate step in transferring desirable genes from wheat-
grass to wheat [22, 35]. Several wheat-Th. intermedium 
partial amphiploids have been developed and widely 
exploited as sources of disease resistance in wheat 
improvement [3, 4, 57, 68]. Georgieva et al. [25] obtained 
two intergeneric wheat/wheatgrass amphiploid lines H95 
and 55(1-57) with high protein content and resistance to 
certain fungal diseases. Breeding for FHB resistance is 
difficult because it is a complex trait controlled by mul-
tiple genes and influenced by environments [9, 26, 36, 52, 
53]. Jauhar and Peterson [33] attempted to transfer FHB 
resistance of diploid Th. elongatum into durum wheat. 
After screening a series of wheat-Th. elongatum derived 
lines for FHB resistance, Fu et al. [24] indicated that the 
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short arm of chromosome 7E of Th. elongatum conferred 
a high level of resistance to the spread of FHB. The resist-
ance genes from Th. ponticum can be pyramided with the 
currently identified resistance genes in wheat to enhance 
the genetic diversity and provide more durable resistance 
of wheat to FHB. Liu et al. [47] reported three common 

wheat-Th. ponticum derived cultivars Xinong 509, 
Xinong 511 and Xinong 529 with good FHB resistance, 
which carry a chromosome 7E segment of the decaploid 
Th. ponticum. Four FHB resistant wheat lines L658, L693, 
L696, and L699 were developed [48], which demonstrates 

Fig. 1  GISH and mcFISH patterns from lines HS2-2, HS2-4 and HS2-5. a, c, e Th. bessarabicum (J) genomic DNA labeled with fluorescein-12-dUTP 
was used as a probe for green signals, and common wheat cultivar Chinese Spring as a blocker. b, d, f The synthetic oligo pAs1-1, pAs1-3, and 
AFA-4 were 5′ end-labelled with 6-carboxytetramethyl-rhodamine (TAMRA) for red signals. The synthetic oligo pSc119.2-1 and (GAA​) 10 were 5′ 
end-labelled with 6-carboxyfluorescein (6-FAM) for green signals. White arrows show the J-genome chromosomes. Bar = 10 μm. a, b line HS2-2, c, d: 
line HS2-4, e, f line HS2-5
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the possibility of using Th. intermedium to develop novel 
wheat germplasm with different disease resistance.

In this study, five wheat-Th. intermedium partial 
amphiploids derived from the octoploid tritelytri-
gia (2n = 8× = 56, AABBDDEE) and Th. intermedium 
showed the resistance to FHB. GISH and mcFISH 
results revealed that these lines had 10-14  J-genome 

chromosomes from Th. intermedium. Line HS2-5 had 
the best resistance to FHB, which indicated that certain 
J-genome chromosomes of Th. intermedium harbored 
genes for FHB resistance. Chen et al. [12] reported that 
T. durum × Th. distichum hybrid lines, AFR4 and AFR5, 
expressed a significantly higher level of resistance to the 
spread of FHB compared to the other durum wheat-alien 

Fig. 2  GISH and mcFISH patterns from lines HS2-14 and HS2-16. a, c: Th. bessarabicum (J) genomic DNA labeled with fluorescein-12-dUTP was used 
as a probe for green signals, and common wheat cultivar Chinese Spring as a blocker. b, d: The synthetic oligo pAs1-1, pAs1-3, and AFA-4 were 5′ 
end-labelled with 6-carboxytetramethyl-rhodamine (TAMRA) for red signals. The synthetic oligo pSc119.2-1 and (GAA​) 10 were 5′ end-labelled with 
6-carboxyfluorescein (6-FAM) for green signals. White arrows show the J-genome chromosomes. Bar = 10 μm. a, b: line HS 2-14, c, d: line HS 2-16
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Table 2  The morphological characters for the five wheat-Th. intermedium lines, contrals and their parents in 2017

All indices are described by mean; means in a column followed by the same letter(s) are not significantly different at a 5% probability level

Line Plant 
height (cm)

Spike length (cm) Tiller Spikelet 
number

Seeds 
of main spike

1000-kernal 
weigh (g)

Seed protein 
content (%)

Maturity

Longmai33 95a 11.2ef 4b 19a 46b 41ab 17.3c 92bc

Sumai3 82b 8.5f 5b 16a 48a 34.5b 15.2c 80c

Ganmai 8 97a 13.8c 4b 18a 46b 36.3b 18.1c 95b

Th. intermedium 82b 27.4ab 65ab 20a 25d 8.2c 26.0ab 110ab

HS2-2 75b 14.5bc 4b 18a 46b 30.4b 22.5b 112a

HS2-4 78b 13.5c 3b 18a 44bc 31.4b 20.0b 112a

HS2-5 80b 13.2c 3b 17a 29 cd 29.2bc 20.7b 112a

HS2-14 92ab 12.7de 7b 15a 35c 32.2b 19.6b 95b

HS2-16 93a 13.1 cd 5b 14a 32c 33.3b 18.3bc 95b

Fig. 3  Evaluation of Fusarium head blight resistance and seed morphologies of five wheat-Th. intermedium partial amphiploids. The above is the 
FHB test results in the field (photo taken in July 2017). The below is harvested seeds (photo taken in August 2017). From left to right, lines HS2-2, 
HS2-4, HS2-5, HS2-14, and HS2-16
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hybrid lines. GISH analysis revealed that all of the alien 
chromosomes present in lines AFR4 and AFR5 belong to 
the J-genome. Therefore, Th. bessarabicum and Th. inter-
medium as the donor for J-genome chromosomes can 
be used for breeding FHB resistance. In addition, lines 
HS2-2 and HS2-5 had not only the least PSS value, but 
also higher seed protein content (22.5% and 20.7%), indi-
cating that these wheat-Th. intermedium amphiploids 
are considered both as a “breeding bridge” in the transfer 
of genes from the intermedium wheatgrass to common 
wheat.

Th. intermedium, as an allohexaploid species, is 
proposed to be formed by an ancient hybridization 
event between the diploid Pseudoroegneria strigosa 
(2n = 2× = 14, StSt) and a segmental tetraploid carry-
ing Jr and Jvs genomes [13]. The Jr and Jvs genomes rep-
resent ancestral genomes of the present Jb genome of Th. 
bessarabicum and the Je genome of Th. elongatum respec-
tively [58]. The Jvs genome is distinct from the Jb genome 
as it retains the repetitive sequences from the V genome 
of Dasypyrum villosum L. Candagy [13]. These genomes 
provide abundant genetic resources for their hybrid 
progenies.

Identification and tracking of these chromosomes is a 
prerequisite for directed chromosome engineering. The 
technologies of GISH and FISH can be used to differenti-
ate and localize Th. intermedium, Th. ponticum, and Th. 
elongatum chromosomes in wheat backgrounds [63]. In 
this study, the multiplex oligos containing probe com-
bined with the J-genome DNA as probe were used to dis-
criminate chromosomes from Th. intermedium in wheat 
backgrounds. The J-genome chromosome signals of the 
five partial amphiploids lines showed two types of hybrid 
signals. One displayed a light-green fluorescence signals 
over most of their lengths except for the terminal and 

centromeric regions as detected by the J-genome probe, 
such as lines HS2-2, HS2-4 and HS2-5 (Fig. 1a, c, e). This 
type of hybrid signals was identified by Cseh et  al. [13] 
with the genomic DNA as the probes from the diploid 
Ps. strigosa (St) and Th. bessarabicum (J). Another type 
of signals covered the entire chromosome with a whole 
light-green fluorescence signal, such as part of J-genome 
chromosomes of line HS2-16 (Fig.  2c). Two types of 
hybridization signal on the J-genome chromosomes 
indicated that among the five partial amphiploid lines 
developed, the characteristics of these J-genome chromo-
somes from Th. intermedium were not exactly the same 
as Th. bessarabicum. In addition, compared with the con-
ventional FISH probe, synthesized oligonucleotide probe 
has the advantages of low cost, high sensitivity and high 
resolution [20]. In this study, although oligo probes were 
used to distinguish wheat genome, there were some spe-
cific signals on J-genome chromosome (Figs. 1, 2), which 
indicated that the further development of oligo probes on 
J-genome chromosome would help to improve the recog-
nition efficiency of J-genome chromosome.

Conclusions
Five wheat-Th. intermedium partial amphiploids with 
FHB resistance and good protein contents were devel-
oped by crossing octoploid tritelytrigia (2n = 8× = 56, 
AABBDDEE) with Th. intermedium. Their genomic con-
stitutions was examined by means of GISH and multi-
color-FISH. These wheat-Th. intermedium amphiploids 
with the J-genome chromosomes from Th. intermedium 
were identified and can be considered as a valuable 
source of FHB resistance in wheat breeding.

Methods
Plant materials
The plant materials used in this study included Th. inter-
medium, Th. bessarabicum, five lines of partial amphi-
ploids and common wheat, Chinese Spring (CS). Th. 
intermedium (2n = 6× = 42 StStJJJSJS), Longmai 33 
(2n = 6× = 42 AABBDD) and Sumai 3 (2n = 6× = 42 
AABBDD) were obtained from the Heilongjiang Acad-
emy of Agricultural Sciences, Harbin, China. Thino-
pyrum bessarabicum (2n = 2× = 14 JJ or JbJb) was kindly 
supplied by Dr. Zengjun Qi, Nanjing Agricultural Uni-
versity, Nanjing, Jiangsu province, China. The lines of 
wheat-Th. intermedium partial amphiploids, HS2-2, HS2-
4, HS2-5, HS2-14, and HS2-16, were developed from 
crosses between Ganmai 8 and Th. intermedium at the 
College of Life Science and Technology of Harbin Nor-
mal University, Harbin, Heilongjiang province, China. 
Ganmai 8 is an octoploid tritelytrigia partial amphip-
loids (AABBDDEE, 2n = 8× = 56) that were developed 
from the cross between common wheat line 91C-9 and 

Table 3  The evaluation of Fusarium head blight resistance 
in 2016 and 2017

All indices are described by mean ± standard error

Means in a column followed by the same letters are not significantly different at 
P < 0.05

N number of plant spikes, PSS the percent of symptomatic spikelets

Line 2016 2017

N PSS N PSS

Longmai 33 (S) 30 0.82 ± 0.02b 30 0.85 ± 0.02b

Sumai 3(R) 30 0.30 ± 0.01 b 30 0.31 ± 0.02 b

HS2-2 30 0.15 ± 0.02b 30 0.18 ± 0.03b

HS2-4 30 0.18 ± 0.02b 30 0.20 ± 0.02ab

HS2-5 30 0.11 ± 0.01b 30 0.17 ± 0.04b

HS2-14 30 0.30 ± 0.03a 30 0.28 ± 0.03a

HS2-16 30 0.16 ± 0.03b 30 0.19 ± 0.03b
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the partial amphiploid line Yuan 16-3 (2n = 8x = 56, 
AABBDDEE) in Shanxi Academy of Agricultural Sci-
ences, Taiyuan, Shanxi province, China. Chinese Spring 
wheat (2n = 6× = 42, AABBDD) were provided by the 
College of Life Science and Technology of Harbin Nor-
mal University.
FHB assessments
The experiment was conducted over two years in two 
fields: Minzhu field at Crop Resources Institute, Hongji-
ang Academy of Agriculture Sciences (126º27′E and 
51º16.12′N), Harbin, China, in 2016 and 2017; field 
at Harbin Normal University (126º57′E and 45º87′N), 
China, in 2016 and 2017. We used a randomized com-
plete block to design an experiment with three rep-
lications. The plot consisted of 2.0-m long rows, and 
the space between rows was 0.4  m. To determine FHB 
resistance, the field spikelet-cutting method was used to 
inoculate. Ten microliter of a macroconidial suspension 
(5000 macroconidia per ml) of the spore-derived iso-
late of F. graminearum No. 4 (provided by Plant Protec-
tion Institute, Honglongjiang Academy of Agriculture 
Sciences, Harbin, China) was injected into 10 random 
selected plants spikes at early anthesis each. The inocu-
lated spikes were covered with plastic bags for 3 d to 
maintain the relative humidity and temperature. The 
data was recorded at 21 d after inoculation. The number 
of symptomatic spikelets and the total number of spike-
lets of every tagged spike were counted for the percent 
of symptomatic spikelets (PSS). Longmai 33 served as the 
susceptible controls and Sumai 3 served as the resistant 
control in both fields.

Morphological observation and protein content 
of measurement
During 2016 and 2017, each lines was grown in plots 
consisting of 2.0-m long rows, and spaced 0.4  m that 
were arranged in a randomized complete block design 
with three replicates in two fields. Thirty seeds were 
sown in a row in early April and harvested at end of July. 
The agronomic performances were investigated in two 
consecutive years in two fields. From each line, plant 
height (cm), spike length (cm), number of spikelets per 
spike, 1000-kernal weigh, awn, and maturity date were 
recorded in ten randomly sampled individuals from each 
plot during the growing seasons. Morphological obser-
vations were carried out as described previously [42]. 
Plant height was determined from the ground level to 
the top of the spike, and spike length was measured from 
the base of rachis to the top of the spike. In addition, 
number of spikelets per spike was enumerated and the 
spikes were threshed in a bench micro-thresher to deter-
mine thousand-kernel weight (g). One hundred seeds 
of each line with the same seed shape were placed into 

the sample cup. DA7200 Multifunctional Near Infrared 
Spectromete (Perten, Switzerland) was used for testing 
the protein content of seed and recorded the data. Sim-
plicity software for data analysis.

Chromosome preparation
Seeds were germinated at 23.5  °C for 24  h in moist fil-
ter paper in Petri dishes, incubated at 4 °C for 48 h, and 
then returned to 23.5 °C for 27.5 h. Root tips were treated 
with ice water at 0–4 °C for 24 h, fixed in Carnoy’s fixa-
tive (Anhydrous alcohol: Acetic acid = 3:1) for 24 h, and 
stained in 1% acetic carmine for at least 5  h. Root tips 
were squashed in 45% acetic acid and observed under a 
light microscope (BH-2, Olympus, Tokyo, Japan).

In situ hybridization
Genomic DNA was isolated using a CTAB method [19] 
from young leaves of the three putative diploid pro-
genitors Th. bessarabicum and labeled with fluorescein-
12-dUTP by the nick translation method to be used as 
the probes. Sheared genomic DNA from Chinese Spring 
(AABBDD, 2n = 42) was used as the blocking DNA. The 
protocols of GISH and multicolor FISH using the syn-
thesized probes were described by Wang et  al. [61]. An 
oligonucleotide (oligo hereafter) multiplex containing 
oligos pAs1-1, pAs1-3, AFA-4, (GAA​) 10, and pSc119.2-
1, was used for identifying A, B and D genomes of wheat 
that was previously described by Wang et al. [61] and Du 
et al. [20]. The oligo probes were synthesized by TsingKe 
biotechnology Co. Ltd. (Beijing, China). The synthetic 
oligo pAs1-1, pAs1-3, and AFA-4 were 5ʹ end-labelled 
with 6-carboxytetramethyl-rhodamine (TAMRA) for 
red signals. The synthetic oligo pSc119.2-1 and (GAA​
) 10 were 5ʹ end-labelled with 6-carboxyfluorescein 
(6-FAM) for green signals. Hybridization stringency 
(%) = 100 + hybridization temperature (Th)- melting tem-
perature (Tm) = 100 + 37  °C (Th)—105  °C (Tm) = 32%. 
Photographs were captured with a Leica DM6000B flu-
orescence microscope (Leica, Mannheim, Germany) 
equipped with a digital camera (Leica model DFC480).

Statistical analysis
Significant differences in the means of different geno-
types for PSS were determined by the multiple samples 
t-test at P < 0.05 using IBM SPSS Statistics 19 software 
(SPSS Inc., Chicago, IL), and the significance of differ-
ences in the same genotype indices between inoculated 
and non-inoculated plants was also determined by the 
independent samples t-test at P < 0.05 with the same 
software.
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